csc的不定積分


推選答案∫cscx dx =∫1/sinx dx =∫1/[2sin(x/2)cos(x/2)] dx,兩倍角公式 =∫1/[sin(x/2)cos(x/2)] d(x/2) =∫1/tan(x/2)*sec2(x/2) d(x/2) =∫1/tan(x/2) d[tan(x/2)],注∫sec2(x/2)d(x/2)=tan(x/2)+C =ln|tan(x/2)|+C,這是答案一 進(jìn)一步化簡(jiǎn): =ln|sin(x/2)/cos(x/2)|+C =ln|2sin(x/2)cos(x/2)/[2cos2(x/2)]|+C,湊出兩倍角公式 =ln|sinx/(1+cosx)|+C =ln|sinx(1-cosx)/sin2x|+C =ln|(1-cosx)/sinx|+C =ln|cscx-cotx|+C,這是答案二在 微積分中,一個(gè)函數(shù) f 的 不定積分,或原函數(shù),或反導(dǎo)數(shù),是一個(gè) 導(dǎo)數(shù)等于 f 的 函數(shù) F ,即 F ′ = f。不定積分和定積分間的關(guān)系由微積分基本定理確定。其中 F是 f的不定積分。根據(jù) 牛頓-萊布尼茨公式,許多函數(shù)的定積分的計(jì)算就可以簡(jiǎn)便地通過(guò)求不定積分來(lái)進(jìn)行。這里要注意不定積分與定積分之間的關(guān)系:定積分是一個(gè)數(shù),而不定積分是一個(gè)表達(dá)式,它們僅僅是數(shù)學(xué)上有一個(gè)計(jì)算關(guān)系,其它一點(diǎn)關(guān)系都沒(méi)有!一個(gè)函數(shù),可以存在不定積分,而不存在定積分,也可以存在定積分,而沒(méi)有不定積分。連續(xù)函數(shù),一定存在定積分和不定積分;若只有有限個(gè)間斷點(diǎn),則定積分存在;若有跳躍間斷點(diǎn),則原函數(shù)一定不存在,即不定積分一定不存在。
網(wǎng)上報(bào)名
  • 姓名:
  • 專業(yè):
  • 層次: ??分?jǐn)?shù):
  • 電話:
  • QQ/微信:
  • 地址:

文中圖片素材來(lái)源網(wǎng)絡(luò),如有侵權(quán)請(qǐng)聯(lián)系644062549@qq.com刪除

轉(zhuǎn)載注明出處:http://www.tengyi66.com