高中數學導數知識點


導數在高中數學中是很重要的內容,在學習難度上也是很大的,很多學生對導數了解起來很困難因此不想學習導數,導數到底有沒有那么難,接下來掌門學堂小編就給大家?guī)砹烁咧袛祵W導數知識點的歸納,一起來了解一下吧。

高中數學導數知識點

高中數學導數知識點

高中數學導數知識點

導數(Derivative)是微積分中的重要基礎概念。當函數y=f(x)的自變量X在一點x0上產生一個增量Δx時,函數輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df/dx(x0)。

高中數學導數知識點

y=c(c為常數) y'=0

y=x^n y'=nx^(n-1)

y=a^x y'=a^xlna

y=e^x y'=e^x

y=logax y'=logae/x

y=lnx y'=1/x

.y=sinx y'=cosx

y=cosx y'=-sinx

y=tanx y'=1/cos^2x

y=cotx y'=-1/sin^2x

y=arcsinx y'=1/√1-x^2

y=arccosx y'=-1/√1-x^2

y=arctanx y'=1/1+x^2

y=arccotx y'=-1/1+x^2

在推導的過程中有這幾個常見的公式需要用到:

y=f[g(x)],y'=f'[g(x)]?g'(x)『f'[g(x)]中g(x)看作整個變量,而g'(x)中把x看作變量』

y=u/v,y'=u'v-uv'/v^2

y=f(x)的反函數是x=g(y),則有y'=1/x'

證:顯而易見,y=c是一條平行于x軸的直線,所以處處的切線都是平行于x的,故斜率為0。用導數的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。

這個的推導暫且不證,因為如果根據導數的定義來推導的話就不能推廣到n為任意實數的一般情況。在得到 y=e^x y'=e^x和y=lnx y'=1/x這兩個結果后能用復合函數的求導給予證明。

y=a^x,

⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)

⊿y/⊿x=a^x(a^⊿x-1)/⊿x

如果直接令⊿x→0,是不能導出導函數的,必須設一個輔助的函數β=a^⊿x-1通過換元進行計算。由設的輔助函數可以知道:⊿x=loga(1+β)。

所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β

顯然,當⊿x→0時,β也是趨向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。

把這個結果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。

可以知道,當a=e時有y=e^x y'=e^x。

y=logax

⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x

⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x

因為當⊿x→0時,⊿x/x趨向于0而x/⊿x趨向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有

lim⊿x→0⊿y/⊿x=logae/x。

可以知道,當a=e時有y=lnx y'=1/x。

這時可以進行y=x^n y'=nx^(n-1)的推導了。因為y=x^n,所以y=e^ln(x^n)=e^nlnx,

所以y'=e^nlnx?(nlnx)'=x^n?n/x=nx^(n-1)。

y=sinx

⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)

⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)

所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)?lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx

類似地,可以導出y=cosx y'=-sinx。

y=tanx=sinx/cosx

y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x

y=cotx=cosx/sinx

y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x

y=arcsinx

x=siny

x'=cosy

y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2

y=arccosx

x=cosy

x'=-siny

y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2

y=arctanx

x=tany

x'=1/cos^2y

y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2

y=arccotx

x=coty

x'=-1/sin^2y

y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2

另外在對雙曲函數shx,chx,thx等以及反雙曲函數arshx,archx,arthx等和其他較復雜的復合函數求導時通過查閱導數表和運用開頭的公式與

y=u土v,y'=u'土v'

y=uv,y=u'v+uv'

均能較快捷地求得結果。

以上就是高二數學常用導數公式大全的全部內容,大家都記好了嗎,只有記住公式才能更好地解題!

以上是掌門學堂小編為大家整理的關于高中數學導數知識點的總結,希望能給大家?guī)韼椭?。學生應該明確自己的目標,在學習過程中做好記錄,一方面能培養(yǎng)學生的自主學習能力,另一方面又能使學生養(yǎng)成良好的預習習慣和正確的學習方法。

網上報名
  • 姓名:
  • 專業(yè):
  • 層次: 分數:
  • 電話:
  • QQ/微信:
  • 地址:

文中圖片素材來源網絡,如有侵權請聯(lián)系644062549@qq.com刪除

提交報名同學/家長:允許擇校老師幫您擇校調劑,同意《隱私保障》條例,并允許推薦給更多服務商為您提供服務!

轉載注明出處:http://www.tengyi66.com