同學們在學習數(shù)學的過程中,要學會歸納和總結在課本上學過的知識點,能夠方便同學們進行復習。掌門學堂小編為大家?guī)砹艘黄咭粩?shù)學必修一知識點梳理的文章,其中介紹了課本上的基礎知識點和試卷上的考點,想要了解的同學趕快跟隨小編一起來看看吧。
高一數(shù)學必修一知識點梳理
集合的中元素的三個特性:(1)元素的確定性如:世界上最高的山(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合。
集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}(2)集合的表示方法:列舉法與描述法。注意:常用數(shù)集及其記法:XKb1.Com
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集:N*或N+
整數(shù)集:Z
有理數(shù)集:Q
實數(shù)集:R
列舉法:{a,b,c……}
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合{x?R|x-3>2},{x|x-3>2}
語言描述法:例:{不是直角三角形的三角形}
Venn圖:
集合的分類:(1)有限集含有有限個元素的集合(2)無限集含有無限個元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}
“包含”關系—子集注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
“相等”關系:A=B(5≥5,且5≤5,則5=5)實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個集合是它本身的子集。AíA②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同時BíA那么A=B
不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
子集個數(shù):有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集
運算類型交集并集補集定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
指數(shù)與指數(shù)冪的運算根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.
當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).
當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。注意:當是奇數(shù)時,當是偶數(shù)時,
分數(shù)指數(shù)冪正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義
指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質也同樣可以推廣到有理數(shù)指數(shù)冪.
以上就是由掌門學堂小編為同學們帶來的高一數(shù)學必修一知識點梳理的內容,希望能夠幫助到大家。同學們除了在課上認真聽講外,還要做好課堂筆記,總結老師講的重點和強調的細節(jié),這樣能夠幫助同學們高效學習和提高成績。