數(shù)學(xué)在學(xué)生任何階段的學(xué)習(xí)中占據(jù)著非常重要的部分。所以在考學(xué)中占據(jù)分?jǐn)?shù)中起到了非常關(guān)鍵的作用,現(xiàn)在有很多同學(xué)即將步入到初三的學(xué)習(xí)階段,所以很想了解一下關(guān)于初三數(shù)學(xué)元知識(shí)點(diǎn)的相關(guān)內(nèi)容,下面掌門學(xué)堂小編和大家分享一下。
初三數(shù)學(xué)圓知識(shí)點(diǎn)
平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長(zhǎng)稱為半徑。
圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過(guò)圓心的弦叫做直徑。
頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。
過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。
直線與圓有3種位置關(guān)系:無(wú)公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。
兩圓之間有5種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。
在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開(kāi)圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。
有關(guān)圓的基本性質(zhì)與定理
點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO<r
圓是軸對(duì)稱圖形,其對(duì)稱軸是任意一條過(guò)圓心的直線。圓也是中心對(duì)稱圖形,其對(duì)稱中心是圓心。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的弧。
在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。
一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。
直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。
不在同一直線上的3個(gè)點(diǎn)確定一個(gè)圓。
一個(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。
直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距離):AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO。
以上是掌門學(xué)堂小編和大家分享關(guān)于初三數(shù)學(xué)語(yǔ)言知識(shí)點(diǎn)的相關(guān)內(nèi)容,可見(jiàn)針對(duì)于人的知識(shí)點(diǎn)內(nèi)容包括有很多,所以學(xué)生在學(xué)習(xí)的期間有任何不懂的問(wèn)題,一定要及時(shí)和老師以及身邊學(xué)習(xí)較好,同學(xué)保持一個(gè)良好的溝通,在最短的時(shí)間內(nèi)解決掉問(wèn)題,這樣對(duì)于學(xué)習(xí)的積累會(huì)是一個(gè)非常不錯(cuò)的效果。