數(shù)學(xué)在任何階段的學(xué)習(xí)過程中,知識點都是非常多的,并且也對于日常生活可以隨時的運用到??梢姅?shù)學(xué)的學(xué)習(xí)不僅豐富自身的生活,對于自身的成績更可以起到至關(guān)重要的作用,那么數(shù)學(xué)必修四知識點總結(jié)的相關(guān)內(nèi)容有哪些?下面高職招生網(wǎng)小編和大家分享一下。
數(shù)學(xué)必修四知識點總結(jié)
圓與方程
能熟練地把一般式方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方后定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關(guān)系來判斷點與圓、直線與圓、圓與圓的位置關(guān)系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。
總的來說這一本書難度不大,只是比較繁瑣,需要有耐心的去畫圖去計算。
程序框圖與三種算法語句的結(jié)合,及框圖的算法表示,不要用常規(guī)的語言來理解,否則你會在這樣的題型中栽跟頭。
秦九韶算法是重點,要牢記算法的公式。
統(tǒng)計就是對一堆數(shù)據(jù)的處理,考試也是以計算為主,會從條形圖中計算出中位數(shù)等數(shù)字特征,對于回歸問題,只要記住公式,也就是個計算問題。
概率,主要就只幾何概型、古典概型。幾何概型只要會找表示所求事件的長度面積等,古典概型只要能表示出全部事件就可以。
三角函數(shù)
考試必在這一塊出題,且題量不??!誘導(dǎo)公式和基本三角函數(shù)圖像的一些性質(zhì),沒有太大難度,只要會畫圖就行。難度都在三角函數(shù)形函數(shù)的振幅、頻率、周期、相位、初相上,及根據(jù)最值計算A、B的值和周期,及恒等變化時的圖像及性質(zhì)變化,這部分的知識點內(nèi)容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。
平面向量
向量的運算性質(zhì)及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要“同起點的向量”這一條就OK了。向量共線和垂直的數(shù)學(xué)表達(dá),是計算當(dāng)中經(jīng)常用到的公式。向量的共線定理、基本定理、數(shù)量積公式。分點坐標(biāo)公式是重點內(nèi)容,也是難點內(nèi)容,要花心思記憶。
三角恒等變換
這一章公式特別多,像差倍半角公式這類內(nèi)容常會出現(xiàn),所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫好后貼在桌子上,天天都要看。要提一點,就是三角恒等變換是有一定規(guī)律的,記憶的時候可以集合三角函數(shù)去記。
數(shù)列
等差、等比數(shù)列的通項公式、前n項及一些性質(zhì)常出現(xiàn)于填空、解答題中,這部分內(nèi)容學(xué)起來比較簡單,但考驗對其推導(dǎo)、計算、活用的層面較深,因此要仔細(xì)。考試題中,通項公式、前n項和的內(nèi)容出現(xiàn)頻次較多,這類題看到后要帶有目的的去推導(dǎo)就沒問題了。
以上是高職招生網(wǎng)小編和大家分享關(guān)于數(shù)學(xué)必修四知識點總結(jié)的相關(guān)內(nèi)容,課件在數(shù)學(xué)必修4內(nèi)包含源于方程三角,函數(shù),平面向量,三角恒等變換多個這是面對于每一個知識面中都有相關(guān)的解讀或者公式,都是需要學(xué)生對此牢記于心的。