學(xué)好數(shù)理化,走遍天下都不怕。聽到這句俗話就知道數(shù)理化有多么的強(qiáng)大,特別是數(shù)學(xué),一直是我們的主科,但是很多人都認(rèn)為數(shù)學(xué)很難,其實(shí)只要掌握了訣竅,就知道數(shù)學(xué)其實(shí)很簡單。下面掌門小編就來給大家分享初三的數(shù)學(xué)公式大全,趕緊收藏起來吧。
1、面積公式
初中幾何面積公式常見的有以下幾類:
長方形面積=長×寬 ,S=ab
正方形面積=邊長×邊長 ,S=a2
三角形面積=底×高÷2 ,S=ah/2平行四邊形面積=底×高 ,S=ah 梯形面積=(上底+下底)×高÷2 ,S=1/2(a+b)h 圓形面積=半徑×半徑×圓周率 ,S=πr扇形面積=半徑×半徑×圓周率×圓心角度數(shù)(n)÷360 ,S=nπr2/360
2、一次函數(shù)公式
一次函數(shù)為直線,表達(dá)式有以下幾種
點(diǎn)斜式:y-b=k(x-a);已知斜率k以及過點(diǎn)(a,b)
兩點(diǎn)式:(y-b)/(x-a)=(b-d)/(a-c);已知兩點(diǎn)(a,b),(c,d)斜率為(b-d)/(a-c)斜截式:y=kx+b;已知斜率k,y軸截距為b即過點(diǎn)(0,b)根據(jù)點(diǎn)斜式
截距式:x/a+y/b=1;已知x,y軸截距分別為a,b即過兩點(diǎn)(a,0),(0,b)根據(jù)兩點(diǎn)式
3、二次函數(shù)公式
二次函數(shù)為拋物線,表達(dá)式有以下三種。
一般式:y=ax2+bx+c;(a≠0)
頂點(diǎn)式:y=a(x-h)2+k; [a≠0定點(diǎn)(h,k)]
交點(diǎn)式:y=a(x-x1)(x-x2);[拋物線與x軸交于(x1,0)(x2,0)]
二次函數(shù)表達(dá)式y(tǒng)=ax2+bx+c;二次函數(shù)是軸對(duì)稱圖形。
二次項(xiàng)系數(shù)a決定開口方向(a>0,開口向上;a<0,開口向下)
對(duì)稱軸:x = -b/2a
頂點(diǎn)坐標(biāo):[ -b/2a,(4ac-b2)/4a ]
Δ=b2-4ac;
拋物線與x軸交點(diǎn)個(gè)數(shù)(Δ>0時(shí),2個(gè)交點(diǎn);Δ=0時(shí),1個(gè)交點(diǎn);Δ<0時(shí),沒有交點(diǎn))
4、三角函數(shù)公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
以上就是掌門小編分享的數(shù)學(xué)初三公式大全,掌握了這些數(shù)學(xué)公式,你會(huì)發(fā)現(xiàn),其實(shí)數(shù)學(xué)很簡單。