二次函數(shù)作為初三數(shù)學很重要的知識,一直讓很多同學覺得頭疼,怎么學也學不好,成績一直不理想。其實只要我們掌握了二次函數(shù)的知識點,二次函數(shù)學習起來也不是很困難的。下面就讓掌門學堂小編帶大家了解一下初三數(shù)學二次函數(shù)知識點都有哪些,希望對大家有所幫助。
初三數(shù)學二次函數(shù)知識點
二次函數(shù)的概念
1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強調:和一元二次方程類似,二次項系數(shù),而可以為零.二次函數(shù)的定義域是全體實數(shù)。
2.二次函數(shù)的結構特征:
⑴等號左邊是函數(shù),右邊是關于自變量的二次式,的最高次數(shù)是2。
⑵是常數(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項。
初三數(shù)學二次函數(shù)的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)。
頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]。
交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]。
注:在3種形式的互相轉化中,有如下關系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a。
二次函數(shù)的性質
1.性質:(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
2.k,b與函數(shù)圖像所在象限:
當k>0時,直線必通過一、三象限,y隨x的增大而增大;
當k<0時,直線必通過二、四象限,y隨x的增大而減小。
當b>0時,直線必通過一、二象限;
當b=0時,直線通過原點;
當b<0時,直線必通過三、四象限。
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
初三數(shù)學二次函數(shù)圖像
對于一般式:
①y=ax2+bx+c與y=ax2-bx+c兩圖像關于y軸對稱。
②y=ax2+bx+c與y=-ax2-bx-c兩圖像關于x軸對稱。
③y=ax2+bx+c與y=-ax2-bx+c-b2/2a關于頂點對稱。
④y=ax2+bx+c與y=-ax2+bx-c關于原點中心對稱。(即繞原點旋轉180度后得到的圖形)
對于頂點式:
①y=a(x-h)2+k與y=a(x+h)2+k兩圖像關于y軸對稱,即頂點(h,k)和(-h,k)關于y軸對稱,橫坐標相反、縱坐標相同。
②y=a(x-h)2+k與y=-a(x-h)2-k兩圖像關于x軸對稱,即頂點(h,k)和(h,-k)關于x軸對稱,橫坐標相同、縱坐標相反。
③y=a(x-h)2+k與y=-a(x-h)2+k關于頂點對稱,即頂點(h,k)和(h,k)相同,開口方向相反。
④y=a(x-h)2+k與y=-a(x+h)2-k關于原點對稱,即頂點(h,k)和(-h,-k)關于原點對稱,橫坐標、縱坐標都相反。(其實①③④就是對f(x)來說f(-x),-f(x),-f(-x)的情況
以上內容就是由掌門學堂小編為大家整理分享的初三數(shù)學二次函數(shù)知識點,供大家參考。希望大家通過自己的努力學習來掌握運用好這些二次函數(shù)的知識點,讓學習二次函數(shù)不再困難,并且提高自己的數(shù)學學習成績。