概率是同學們在學習過程中必須掌握的一個重點,那么同學們對這些知識了解多少呢?掌門學堂小編為同學們帶來了一篇初中概率怎么算的文章其中詳細介紹了概率這個知識點以及大題的解答思路和技巧,接下來跟隨小編一起來了解一下吧。
初中概率怎么算
C表示組合方法的數(shù)量
比如:C(3,2),表示從3個物體中選出2個,總共的方法是3種,分別是甲乙、甲丙、乙丙(3個物體是不相同的情況下)。
A表示排列方法的數(shù)量。
比如:n個不同的物體,要取出m個(m<=n)進行排列,方法就是A(n,m)種。
也可以這樣想,排列放第一個有n種選擇,,第二個有n-1種選擇,,第三個有n-2種選擇,·····,第m個有n+1-m種選擇,所以總共的排列方法是n(n-1)(n-2)···(n+1-m),也等于A(n,m)。
注:在具體題目中,看題目需要排列還是組合,也就是單體是否需要順序,需要就用A,不需要就用C。
貝葉斯定理機率論或概率論是研究隨機性或不確定性等現(xiàn)象的數(shù)學。更精確地說,機率論是用來模擬實驗在同一環(huán)境下會產(chǎn)生不同結果的情狀。典型的隨機實驗有擲骰子、扔硬幣、抽撲克牌概率論以及輪盤游戲等。
數(shù)列題
證明一個數(shù)列是等差(等比)數(shù)列時,最后下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學歸納法(用數(shù)學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設后,如何把當前的式子轉化到目標式子,一般進行適當?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;3、證明不等式時,有時構造函數(shù),利用函數(shù)單調(diào)性很簡單(所以要有構造函數(shù)的意識)。
立體幾何題
證明線面位置關系,一般不需要去建系,更簡單;2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系;3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關系(符號問題、鈍角、銳角問題)。
概率問題
搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);2、搞清是什么概率模型,套用哪個公式;3、記準均值、方差、標準差公式;4、求概率時,正難則反(根據(jù)p1+p2+...+pn=1);5、注意計數(shù)時利用列舉、樹圖等基本方法;6、注意放回抽樣,不放回抽樣;7、注意“零散的”的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;8、注意條件概率公式;9、注意平均分組、不完全平均分組問題。
圓錐曲線問題
注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數(shù)法、待定系數(shù)法;2、注意直線的設法(法1分有斜率,沒斜率;法2設x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變量的取值范圍等等;3、戰(zhàn)術上整體思路要保7分,爭9分,想12分。
以上就是由掌門學堂小編為同學們帶來的初中概率怎么算的內(nèi)容,希望能夠幫助到大家。解數(shù)學題是一個需要抽象思維的過程,所以同學們要在平時不斷的進行練習,掌握解答問題的思路和方法,這樣同學們做起題來就會覺得得心應手了。